How safe are 3D-printed skull models for neurosurgical simulation? Measurement of airborne particles and VOCs while burr hole drilling

Author:

Dissanayaka Nalinda,Alexander Hamish,Carluccio Danilo,Redmond Michael,Vandi Luigi-Jules,Novak James I.

Abstract

Purpose Three-dimensional (3D)printed skulls for neurosurgical training are increasingly being used due to the widespread access to 3D printing technology, their low cost and accuracy, as well as limitations and ethical concerns associated with using human cadavers. However, little is known about the risks of airborne particles or volatile organic compounds (VOCs) released while drilling into 3D-printed plastic models. The aim of this study is to assess the level of exposure to airborne contaminants while burr hole drilling. Design/methodology/approach 3D-printed skull samples were produced using three different materials (polyethylene terephthalate glycol [PETG], white resin and BoneSTN) across three different 3D print processes (fused filament fabrication, stereolithography [SLA] and material jetting). A neurosurgeon performed extended burr hole drilling for 10 min on each sample. Spot measurements of particulate matter (PM2.5 and PM10) were recorded, and air samples were analysed for approximately 90 VOCs. Findings The particulate matter for PETG was found to be below the threshold value for respirable particles. However, the particulate matter for white resin and BoneSTN was found to be above the threshold value at PM10, which could be harmful for long periods of exposure without personal protective equipment (PPE). The VOC measurements for all materials were found to be below safety thresholds, and therefore not harmful. Originality/value To the best of the authors’ knowledge, this is the first study to evaluate the safety of 3D-printed materials for burr hole surgical drilling. It recommends PETG as a safe material requiring minimal respiratory control measures, whereas resin-based materials will require safety controls to deal with airborne particles.

Publisher

Emerald

Reference50 articles.

1. Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: a review;The International Journal of Advanced Manufacturing Technology,2019

2. Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training;Neurosurgery,2013

3. PM2. 5 chemical composition and health risks by inhalation near a chemical complex;Journal of Environmental Sciences,2023

4. Workplace exposure standards for airborne contaminants;Guidance on the Interpretation of Workplace Exposure Standards for Airbone Contaminants,2022

5. workplace exposure standards for airborne contaminants,2024

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3