High-cycle fatigue properties of curved-surface AlSi10Mg parts fabricated by powder bed fusion additive manufacturing

Author:

Zhou Yue,Abbara El Mehdi,Jiang Dayue,Azizi Arad,Poliks Mark D.,Ning Fuda

Abstract

Purpose This study aims to uncover the multiscale relations among geometry, surface finish, microstructure and fatigue properties of curved-surface AlSi10Mg parts fabricated by powder bed fusion (PBF) additive manufacturing. Design/methodology/approach This paper investigated the high-cycle tensile and bending fatigue behaviors of PBF-built AlSi10Mg parts with curved surfaces. Besides, the surface finish, porosity and microstructure around various curvatures were characterized. Meanwhile, the stress distributions of the fatigue specimens with curved surfaces under the dynamic tensile/bending loading were analyzed via theoretical analysis and ANSYS simulation. Findings The results showed that the as-built specimens with the smallest curvature exhibited the best surface quality, smallest grain sizes and thinnest grain boundaries. In addition, the tensile fatigue fracture occurred around the largest curvature position of fatigue specimens, which was consistent with the simulated fatigue safety factor results. Moreover, the bending fatigue specimens with the largest curvature presented the shortest fatigue life due to the highest bending and shear stresses along the loading direction. Originality/value So far, most studies have focused on the fatigue behavior of as-built AlSi10Mg parts with planar structures only. The investigation on fatigue properties of as-built AlSi10Mg parts with curved surfaces remains unexplored. This study provides new insights into the characterization and quantification of the fatigue performance of PBF-built metal parts with complex geometries, the knowledge of which can promote their adoption in real industries.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3