Effect of the orientation on the fatigue crack growth of polyamide 12 manufactured by selective laser sintering

Author:

Cano Alberto J.,Salazar Alicia,Rodríguez Jesús

Abstract

Purpose Polyamide 12 (PA12) properties meet specific requirements for various applications in the automotive and aerospace industries. Bulk specimens made of PA12 and processed via the additive manufacturing technique such as selective laser sintering (SLS) present a layered structure. In case of structural applications, the fatigue performance of SLS PA12 parts is of vital importance and fatigue response studies in these type of materials are still scarce. Therefore, the purpose of this paper is to analyse the effect of the applied load orientation on the fatigue crack propagation behaviour of the layered structure of SLS PA12. Design/methodology/approach With the aim of understanding the effect of the applied load with respect to the layer orientation on the fatigue crack growth of SLS PA12, fatigue crack growth tests were carried out at two orientations. The specimens called PARA were orientated in such a way that the applied force direction belongs to the layer plane while in the group called PERP, the tensile force direction is coincident with the build direction, that is, perpendicular to the slice. Besides, special attention has been paid to the analysis of the fracture surfaces of the specimens, linking the micromechanisms of failure with the microstructure of the material. Findings The SLS PA12 specimens tested with the load applied parallel to the layered structure show a little better fatigue response than those tested at perpendicular orientation. The fracture surfaces of the specimens tested at perpendicular orientation are slightly smoother than those tested at parallel orientation. Crazes are the main micromechanism of failure with a crater size of 50 microns, which coincide with the spherulite size. This indicates that the void nucleation of the crazes takes places between lamellae inside the spherulites, and consequently, the craze growth and rupture occurs mainly in a transspherulitic mode. Originality/value PA12 parts manufactured via SLS are becoming more valuable in structural elements in the automative and aeronatical fields. In such applications, fatigue performance is vital for design. Fatigue studies are scarce in literature and even more when dealing with fatigue crack growth behaviour. The value of this work is the analysis of the fatigue crack growth response of these materials taking into account the anisotropic microstructure and to get a better understanding, this behaviour is explained taking into account the micromechanisms of failure and the microstructure of the material.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3