Stereo vision-based repair of metallic components

Author:

Liu Renwei,Wang Zhiyuan,Sparks Todd,Liou Frank,Nedic Cedo

Abstract

Purpose This paper aims to investigate a stereo vision-based hybrid (additive and subtractive) manufacturing process using direct laser metal deposition, computer numerical control (CNC) machining and in-process scanning to repair metallic components automatically. The focus of this work was to realize automated alignment and adaptive tool path generation that can repair metallic components after a single setup. Design/methodology/approach Stereo vision was used to detect the defect area for automated alignment. After the defect is located, a laser displacement sensor is used to scan the defect area before and after laser metal deposition. The scan is then processed by an adaptive algorithm to generate a tool path for repairing the defect. Findings The hybrid manufacturing processes for repairing metallic component combine the advantages of free-form fabrication from additive manufacturing with the high-accuracy offered by CNC machining. A Ti-6Al-4V component with a manufacturing defect was repaired by the proposed process. Compared to previous research on repairing worn components, introducing stereo vision and laser scanning dramatically simplifies the manual labor required to extract and reconstruct the defect area’s geometry. Originality/value This paper demonstrates an automated metallic component repair process by integrating stereo vision and a laser displacement sensor into a hybrid manufacturing system. Experimental results and microstructure analysis shows that the defect area could be repaired feasibly and efficiently with acceptable heat affected zone using the proposed approach.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference21 articles.

1. Effect of stress on the hot corrosion of inconel 718,1985

2. Development of a hybrid manufacturing cell; integration of additive manufacturing with CNC machining,2011

3. Stereo vision based measuring system for online welding path inspection,2015

4. Additive manufacturing laser deposition of Ti-6Al-4V for aerospace repair application,2013

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3