Developing a resilient, robust and efficient supply network in Africa

Author:

Preston Jade F.,Cox Bruce A.ORCID,Rebeiz Paul P.,Breitbach Timothy W.

Abstract

PurposeSupply chains need to balance competing objectives; in addition to efficiency, supply chains need to be resilient to adversarial and environmental interference and robust to uncertainties in long-term demand. Significant research has been conducted designing efficient supply chains and recent research has focused on resilient supply chain design. However, the integration of resilient and robust supply chain design is less well studied. The purpose of the paper is to include resilience and robustness into supply chain design.Design/methodology/approachThe paper develops a method to include resilience and robustness into supply chain design. Using the region of West Africa, which is plagued with persisting logistical issues, the authors develop a regional risk assessment framework and then apply categorical risk to the countries of West Africa using publicly available data. A scenario reduction technique is used to focus on the highest risk scenarios for the model to be tractable. Next, the authors develop a mathematical model leveraging this framework to design a resilient supply network that minimizes cost while ensuring the network functions following a disruption. Finally, the authors examine the network's robustness to demand uncertainty via several plausible emergency scenarios.FindingsThe authors provide optimal sets of transshipment hubs with varying counts from 5 through 15 hubs. The authors determine there is no feasible solution that uses only five transshipment hubs. The authors' findings reinforce those seven transshipment hubs – the solution currently employed in West Africa – is the cheapest architecture to achieve resilience and robustness. Additionally, for each set of feasibility transshipment hubs, the authors provide connections between hubs and demand spokes.Originality/valueWhile, at the time of this research, three other manuscripts incorporated both resilience and robustness of the authors' research unique solved the problem as a network flow instead of as a set covering problem. Additionally, the authors establish a novel risk framework to guide the required amount of redundancy, and finally the out research proposes a scenario reduction heuristic to allow tractable exploration of 512 possible demand scenarios.

Publisher

Emerald

Subject

Automotive Engineering

Reference37 articles.

1. The reliable hub-and-spoke design problem: models and algorithms;Transportation Research Part B: Methodological,2015

2. An introduction to road vulnerability: what has been done, is done and should be done;Transport Policy,2002

3. Exploring efficiency and effectiveness in the supply chain: a conceptual analysis,2005

4. Hub location and the p-hub median problem;Operations Research,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing resilience: model-based simulations;Journal of Defense Analytics and Logistics;2024-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3