Model-driven framework to support evolution of mobile applications in multi-cloud environments

Author:

Chondamrongkul Nacha

Abstract

Purpose The development of mobile applications in multiple clouds environment is a complex task because of the lack of platform standards in cloud computing and mobile computing. The source code involves various proprietary programming libraries for different platforms. However, functionalities are inevitably changed over time, as well as the platform. Therefore, a great deal of development effort is required, when changes need to be made at functional and platform level. This paper aims to propose SIMON, a framework that eases complexity of the development to support software evolution. Design/methodology/approach SIMON shields the developer from the complexity of mobile and cloud platforms in the development of mobile applications in multiple clouds environment. The framework uses model of application design to automate the development and support execution of mobile applications in system environment that needs integration to the number of data sources located on multiple clouds. The framework is composed of prefabricated components that support function changeability and platform adaptability. Findings The framework is examined with the development of a sample application. After it is evaluated with scenarios that involve changing at functional and platform levels, the result shows significant reducing of the development effort by comparing with the other approaches. Originality/value The framework facilitates the implementation of mobile applications in the software system that involves integration to multiple clouds, and it supports software evolution with lesser development effort.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference18 articles.

1. Measuring architectural complexity;IEEE Software,2008

2. Model-driven software evolution: a research Agenda,2007

3. The future of enterprise IT in the cloud;Journal of Computer,2012

4. Mobile cloud middleware;Journal of Systems and Software,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3