Advantages and disadvantages from enforcing emission restrictions within emission control areas

Author:

Dulebenets Maxim A.

Abstract

Purpose Emissions produced by oceangoing vessels not only negatively affect the environment but also may deteriorate health of living organisms. Several regulations were released by the International Maritime Organization (IMO) to alleviate negative externalities from maritime transportation. Certain polluted areas were designated as “Emission Control Areas” (ECAs). However, IMO did not enforce any restrictions on the actual quantity of emissions that could be produced within ECAs. This paper aims to perform a comprehensive assessment of advantages and disadvantages from introducing restrictions on the emissions produced within ECAs. Two mixed-integer non-linear mathematical programs are presented to model the existing IMO regulations and an alternative policy, which along with the established IMO requirements also enforces restrictions on the quantity of emissions produced within ECAs. A set of linearization techniques are applied to linearize both models, which are further solved using the dynamic secant approximation procedure. Numerical experiments demonstrate that introduction of emission restrictions within ECAs can significantly reduce pollution levels but may incur increasing route service cost for the liner shipping company. Design/methodology/approach Two mixed-integer non-linear mathematical programs are presented to model the existing IMO regulations and an alternative policy, which along with the established IMO requirements also enforces restrictions on the quantity of emissions produced within ECAs. A set of linearization techniques are applied to linearize both models, which are further solved using the dynamic secant approximation procedure. Findings Numerical experiments were conducted for the French Asia Line 3 route, served by CMA CGM liner shipping company and passing through ECAs with sulfur oxide control. It was found that introduction of emission restrictions reduced the quantity of sulfur dioxide emissions produced by 40.4 per cent. In the meantime, emission restrictions required the liner shipping company to decrease the vessel sailing speed not only at voyage legs within ECAs but also at the adjacent voyage legs, which increased the total vessel turnaround time and in turn increased the total route service cost by 7.8 per cent. Research limitations/implications This study does not capture uncertainty in liner shipping operations. Practical implications The developed mathematical model can serve as an efficient practical tool for liner shipping companies in developing green vessel schedules, enhancing energy efficiency and improving environmental sustainability. Originality/value Researchers and practitioners seek for new mathematical models and environmental policies that may alleviate pollution from oceangoing vessels and improve energy efficiency. This study proposes two novel mathematical models for the green vessel scheduling problem in a liner shipping route with ECAs. The first model is based on the existing IMO regulations, whereas the second one along with the established IMO requirements enforces emission restrictions within ECAs. Extensive numerical experiments are performed to assess advantages and disadvantages from introducing emission restrictions within ECAs.

Publisher

Emerald

Subject

Management of Technology and Innovation,Strategy and Management,Transportation,Business and International Management

Reference45 articles.

1. Is slow steaming a sustainable means of reducing CO2 emissions from container shipping?;Transportation Research Part D,2011

2. The effectiveness of a European speed limit versus an international bunker-levy to reduce CO2 emissions from container shipping;Transportation Research Part D,2012

3. Evaluating the effects of speed reduce for shipping costs and CO2 emission;Transportation Research Part D,2014

4. CMA CGM (2016), “French Asia Line 3”, available at: www.cma-cgm.com/products-services/line-services/flyer/FAL3 (accessed 10 February 2016).

5. The effectiveness and costs of speed reductions on emissions from international shipping;Transportation Research Part D,2009

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3