Different firm responses to the COVID-19 pandemic shocks: machine-learning evidence on the Vietnamese labor market

Author:

Le Lam Hoang Viet,Huynh Toan Luu DucORCID,Weber Bryan S.,Nguyen Bao Khac Quoc

Abstract

PurposeThis paper aims to identify the disproportionate impacts of the COVID-19 pandemic on labor markets.Design/methodology/approachThe authors conduct a large-scale survey on 16,000 firms from 82 industries in Ho Chi Minh City, Vietnam, and analyze the data set by using different machine-learning methods.FindingsFirst, job loss and reduction in state-owned enterprises have been significantly larger than in other types of organizations. Second, employees of foreign direct investment enterprises suffer a significantly lower labor income than those of other groups. Third, the adverse effects of the COVID-19 pandemic on the labor market are heterogeneous across industries and geographies. Finally, firms with high revenue in 2019 are more likely to adopt preventive measures, including the reduction of labor forces. The authors also find a significant correlation between firms' revenue and labor reduction as traditional econometrics and machine-learning techniques suggest.Originality/valueThis study has two main policy implications. First, although government support through taxes has been provided, the authors highlight evidence that there may be some additional benefit from targeting firms that have characteristics associated with layoffs or other negative labor responses. Second, the authors provide information that shows which firm characteristics are associated with particular labor market responses such as layoffs, which may help target stimulus packages. Although the COVID-19 pandemic affects most industries and occupations, heterogeneous firm responses suggest that there could be several varieties of targeted policies-targeting firms that are likely to reduce labor forces or firms likely to face reduced revenue. In this paper, the authors outline several industries and firm characteristics which appear to more directly be reducing employee counts or having negative labor responses which may lead to more cost–effect stimulus.

Publisher

Emerald

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3