Cold protective clothing with reflective nano-fibrous interlayers for improved comfort

Author:

Sun Chao,Fan Jintu,Wu Huijun,Wu Yuenshing,Wan Xianfu

Abstract

Purpose – The purpose of this paper is to develop multilayer clothing assemblies consisting of fibrous battings and reflective nano-fibrous thin layers for cold protective clothing for improved thermal insulation. Design/methodology/approach – Thermal insulation values of totally 20 assemblies made of varying layers of a thick polyester batting and four different types of thin interlayers were measured using a guarded hot-plate to investigate the effect of the properties of thin interlayers and construction of multilayer assemblies on thermal insulation. Cold protective jackets filled with polyester battings sandwiched with or without interlayers were also made and tested on the sweating fabric manikin-Walter. Findings – Results show that the Rosseland mean extinction coefficients of the thin interlayer and the associated radiative thermal conductivity of the interlayers have significant influence on thermal insulation of the assembly when more than one reflective nano-fibrous interlayers are sandwiched in the assembly. The cold protective jacket filled with multilayer polyester battings and reflective nano-fibrous interlayers have better thermal insulation and moisture permeability index (im) than those filled with the same multilayer polyester battings, but with non-reflective nonwoven interlayers or without interlayers. Originality/value – This paper clearly demonstrates the advantages of reflective nano-fibrous thin material for interlayers in the cold projective jacket.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3