An integrated framework for predicting the best financial performance of banks: evidence from Egypt

Author:

Mousa Mohamed El-Sayed,Kamel Mahmoud Abdelrahman

Abstract

Purpose This study aims to develop and test a framework for integration between data envelopment analysis (DEA) and artificial neural networks (ANN) to predict the best financial performance concerning return on assets and return on equity for banks listed on the Egyptian Exchange, to help managers generate what-if scenarios? For performance improvement and benchmarking. Design/methodology/approach The study empirically tested the three-stage DEA-ANN framework. First, DEA was used as a preprocessor of the banks’ efficiency scores. Second, a back-propagation neural network as a multi-layer perceptron-ANN’s model was designed using expected data sets from DEA to learn optimal performance patterns. Third, the superior performance of banks was forecasted. Findings The results indicated that banks are not operating under their most productive operations, and there is room for potential improvements to reach outperformance. Moreover, the neural networks’ empirical test results showed high correlations between the actual and expected values, with low prediction errors in both the test and prediction phases. Practical implications Based on best performance prediction, banks can generate alternative scenarios for future performance improvement and enabling managers to develop effective strategies for performance control under uncertainty and limited data. Besides, supporting the decision-making process and proactive management of performance. Originality/value Despite the growing research stream supporting DEA-ANN integration applications, these are still limited and scarce, especially in the Middle East and North Africa region. Therefore, the study trying to fill this gap to help bank managers predict the best financial performance.

Publisher

Emerald

Subject

Management Science and Operations Research,Strategy and Management,General Decision Sciences

Reference52 articles.

1. State-of-the-art in artificial neural network applications: a survey;Heliyon,2018

2. Bank branch efficiency under environmental change: a bootstrap DEA on monthly profit and loss accounting statements of Greek retail branches;European Journal of Operational Research,2017

3. Endogenous network efficiency, macroeconomy, and competition: evidence from the Portuguese banking industry;The North American Journal of Economics and Finance,2020

4. A procedure for ranking efficient units in data envelopment analysis;Management Science,1993

5. Efficiency in the Italian banking industry: data envelopment analysis and neural networks;International Research Journal of Finance and Economics,2006

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3