Production of hybrid reinforcement by ball milling for development of aluminium matrix composites

Author:

Arora Gaurav,Sharma Satpal

Abstract

Purpose This paper aims to produce hybrid reinforcement for the development of aluminium matrix composites using ball-billing technique to avoid or reduce the problem of agglomeration of the reinforcement during casting. Design/methodology/approach In the present investigation, a mixture of silicon carbide (SiC) and rice husk ash (RHA) powder in equal weight percentage ratio 4:4 (1:1) was alloyed mechanically in a ball-mill at distinct milling times of 15, 30, 45, 60 and 75 h. Morphological Characterization and density measurements of the ball-milled powder were carried out after different intervals of milling times. Findings The results revealed that the process of ball milling is a novel technique for the conversion of two or more powders in to an integer powder and reduces the problem of agglomeration also. The density measurement results revealed that an increasing trend of density initially and reduction of the density with the increase of milling time. The density value of the combined particles became comparable to the density of aluminium at the milling time of 75 h for the equal weight percentage ratio 4:4 (1:1) of SiC and RHA. Originality/value The manuscript highlights the research work related to the development of the reinforcement for the aluminium hybrid composites by ball milling process. The use of this process for the development of the reinforcement not only reduces the problem of the agglomeration but reduces the density mismatch of the reinforcement and matrix material also.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference26 articles.

1. Corrosion and wear behaviour of Al-Mg-Si alloy matrix hybrid composites reinforced with rice husk ash and silicon carbide;Journal of Materials Research and Technology,2014

2. Corrosion and wear behaviour of rice husk ash-alumina reinforced Al-Mg-Si alloy matrix hybrid composites;Journal of Materials Research and Technology,2013

3. Corrosion and tribological studies of bamboo leaf ash and alumina reinforced Al-Mg-Si alloy matrix hybrid composites in chloride medium;International Journal of Electrochemical Science,2014

4. Fundamentals of mechanical alloying;Materials Science Forum,1992

5. Fabrication of Al-SiC-B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties;Perspectives in Science,2016

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3