Simulation analysis of critical factors of casualty transportation for disaster response: A case study of Istanbul earthquake

Author:

Çağlayan Nadide,Satoglu Sule Itir

Abstract

Purpose The purpose of this paper is to statistically assess the effects of the design factors including usage of data-driven decision support tool (DST), classification of patients (triage), prioritization based on vital scores of patients, number of ambulances and hospital selection rules, on the casualty transportation system’s performance in large-scale disasters. Besides, a data-driven DST for casualty transportation is proposed to enhance the casualty survival and ambulance transportation times during the disaster response stage. Design/methodology/approach In this study, the authors applied simulation and statistical analysis to evaluate the effects of usage of data-driven DST, classification of patients (triage), prioritization of the patients based on vital scores, number of ambulances and hospital selection rules, on the patient survival and transportation time of the casualty transportation system. An experimental design was made, and 16 scenarios were formulated. Simulation models were developed for all scenarios. The number of unrecoverable casualties and time-spent by the casualties until arriving at the hospital was observed. Then, a statistical analysis was applied to the simulation results, and significant factors were determined. Findings Utilization of the proposed DST was found to improve the casualty transportation and coordination performance. All main effects of the design factors were found statistically significant for the number of unrecoverable casualties. Besides, for the Time spent Until Arrival of T1-Type Casualty at the Hospital, all of the main factors are significant except the number of ambulances. Respiratory rate, pulse rate, motor response score priority and hospital selection rule based on available hospital capacities must be considered to reduce the number of unrecoverable casualties and time spent until arrival of the casualties at the hospitals. Originality/value In this study, the factors that significantly affect the performance of the casualty transportation system were revealed, by simulation and statistical analysis, based on an expected earthquake case, in a metropolitan city. Besides, it was shown that using a data-driven DST that tracks victims and intends to support disaster coordination centers and medical staff performing casualty transportation significantly improves survival rate of the victims and time to deliver the casualties. This research considers the whole systems’ components, contributes to developing the response stage operations by filling gaps between using the data-driven DST and casualty transportation processes.

Publisher

Emerald

Subject

Safety, Risk, Reliability and Quality,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Embedding social equity in disaster response: Simulation case study;Journal of Public Affairs Education;2024-01-02

2. Supplying aid products to affected regions by a natural phenomenon in Chiapas, Mexico;Acta logistica;2023-09-30

3. Casualty rescue path optimization in cities in early post-earthquake period;Journal of Computing and Electronic Information Management;2023-05-24

4. Multi-objective optimization for enhancing hospital network resilience under earthquakes;International Journal of Disaster Risk Reduction;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3