A device employing a neural network for blood pressure estimation from the oscillatory pressure pulse wave and PPG signal

Author:

Tian Jian,Xie Jiangan,He Zhonghua,Ma Qianfeng,Wang Xiuxin

Abstract

Purpose Wrist-cuff oscillometric blood pressure monitors are very popular in the portable medical device market. However, its accuracy has always been controversial. In addition to the oscillatory pressure pulse wave, the finger photoplethysmography (PPG) can provide information on blood pressure changes. A blood pressure measurement system integrating the information of pressure pulse wave and the finger PPG may improve measurement accuracy. Additionally, a neural network can synthesize the information of different types of signals and approximate the complex nonlinear relationship between inputs and outputs. The purpose of this study is to verify the hypothesis that a wrist-cuff device using a neural network for blood pressure estimation from both the oscillatory pressure pulse wave and PPG signal may improve the accuracy. Design/methodology/approach A PPG sensor was integrated into a wrist blood pressure monitor, so the finger PPG and the oscillatory pressure wave could be detected at the same time during the measurement. After the peak detection, curves were fitted to the data of pressure pulse amplitude and PPG pulse amplitude versus time. A genetic algorithm-back propagation neural network was constructed. Parameters of the curves were inputted into the neural network, the outputs of which were the measurement values of blood pressure. Blood pressure measurements of 145 subjects were obtained using a mercury sphygmomanometer, the developed device with the neural network algorithm and an Omron HEM-6111 blood pressure monitor for comparison. Findings For the systolic blood pressure (SBP), the difference between the proposed device and the mercury sphygmomanometer is 0.0062 ± 2.55 mmHg (mean ± SD) and the difference between the Omron device and the mercury sphygmomanometer is 1.13 ± 9.48 mmHg. The difference in diastolic blood pressure between the mercury sphygmomanometer and the proposed device was 0.28 ± 2.99 mmHg. The difference in diastolic blood pressure between the mercury sphygmomanometer and Omron HEM-6111 was −3.37 ± 7.53 mmHg. Originality/value Although the difference in the SBP error between the proposed device and Omron HEM-6111 was not remarkable, there was a significant difference between the proposed device and Omron HEM-6111 in the diastolic blood pressure error. The developed device showed an improved performance. This study was an attempt to enhance the accuracy of wrist-cuff oscillometric blood pressure monitors by using the finger PPG and the neural network. The hardware framework constructed in this study can improve the conventional wrist oscillometric sphygmomanometer and may be used for continuous measurement of blood pressure.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference43 articles.

1. Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data;Hypertension,2011

2. Theoretical analysis of non-invasive oscillometric maximum amplitude algorithm for estimating mean blood pressure;Medical & Biological Engineering & Computing,1997

3. A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time;Physiological Measurement,2015

4. Poor reliability of wrist blood pressure self-measurement at home: a population-based study;Hypertension,2016

5. Smartphone-based blood pressure monitoring via the oscillometric finger-pressing method;Science Translational Medicine,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3