Experimental research on a reflective optical fiber bundle hydrogen gas sensor

Author:

Cui Lujun,Shang Huichao,Cao Yan-long,Zhou Gao-feng

Abstract

Purpose Long life and high hydrogen sensitivity are the crucial performance parameters for an optical fiber hydrogen sensing membrane, and these are the fundamental areas of study for an optical fiber hydrogen sensor. Considering that a traditional optical fiber hydrogen sensor based on pure palladium cannot meet the expectations for long life and rapid sensitivity simultaneously, the experiment in this paper designed a kind of reflective optical fiber bundle hydrogen gas sensor based on a Pd0.75–Ag0.25 alloy to achieve a hydrogen sensing system. This paper aims to discuss the issues with this system. Design/methodology/approach A reflective optical fiber bundle hydrogen sensor was made up of an optical fiber bundle and a Pd0.75–Ag0.25 alloy hydrogen membrane. A combination of optical fiber light intensity measurements and the reference calculation method were used to extract the hydrogen concentration information from within the optical fiber, and the relationship between the hydrogen concentration changes and the reflective light intensity in the optical fiber was established. Findings The reflective optical fiber bundle hydrogen gas sensor based on a Pd–Ag alloy membrane was shown to provide an effective way to detect hydrogen concentrations. The experimental results showed that a 20-30-nm-thick Pd0.75–Ag0.25 alloy membrane could reach high hydrogen absorption and sensitivity. Key preparation parameters which included sputtering time and substrate temperature were used to prepare the hydrogen membrane during the DC sputtering process, and the reflectivity of the Pd–Ag alloy membrane was enough to meet the requirements of long life and high hydrogen sensitivity for the optical fiber hydrogen sensor. Originality/value This paper seeks to establish a foundation for optimizing and testing the performance of the Pd–Ag alloy hydrogen sensing membrane for an optical fiber bundle hydrogen sensor. To this end, the optimal thickness and key preparation parameters for the Pd–Ag alloy hydrogen sensing membrane were discussed. The results of this research have proved that the reflective optical fiber hydrogen sensor based on a Pd0.75–Ag0.25 alloy is an effective approach and precisely enough for hydrogen gas monitoring in practical engineering measurements.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference13 articles.

1. Preparation and characterization of d/Ni thin films for hydrogen sensing;Sensor and Actuators B, Chem,1996

2. A novel optical fiber bundle displacement sensor based on artificial neural networks;Journal of Computational and Theoretical Nanoscience,2007

3. Composition control of palladium-sliver alloy for optical fiber hydrogen sensor;Advanced Materials Research,2011

4. Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film;Optical Fiber Technology,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3