Discovering a tourism destination with social media data: BERT-based sentiment analysis

Author:

Viñán-Ludeña Marlon Santiago,de Campos Luis M.

Abstract

Purpose The main purpose of this paper is to analyze a tourist destination using sentiment analysis techniques with data from Twitter and Instagram to find the most representative entities (or places) and perceptions (or aspects) of the users. Design/methodology/approach The authors used 90,725 Instagram posts and 235,755 Twitter tweets to analyze tourism in Granada (Spain) to identify the important places and perceptions mentioned by travelers on both social media sites. The authors used several approaches for sentiment classification for English and Spanish texts, including deep learning models. Findings The best results in a test set were obtained using a bidirectional encoder representations from transformers (BERT) model for Spanish texts and Tweeteval for English texts, and these were subsequently used to analyze the data sets. It was then possible to identify the most important entities and aspects, and this, in turn, provided interesting insights for researchers, practitioners, travelers and tourism managers so that services could be improved and better marketing strategies formulated. Research limitations/implications The authors propose a Spanish-Tourism-BERT model for performing sentiment classification together with a process to find places through hashtags and to reveal the important negative aspects of each place. Practical implications The study enables managers and practitioners to implement the Spanish-BERT model with our Spanish Tourism data set that the authors released for adoption in applications to find both positive and negative perceptions. Originality/value This study presents a novel approach on how to apply sentiment analysis in the tourism domain. First, the way to evaluate the different existing models and tools is presented; second, a model is trained using BERT (deep learning model); third, an approach of how to identify the acceptance of the places of a destination through hashtags is presented and, finally, the evaluation of why the users express positivity (negativity) through the identification of entities and aspects.

Publisher

Emerald

Subject

Computer Science Applications,Tourism, Leisure and Hospitality Management,Information Systems

Reference27 articles.

1. Feature based sentiment analysis for service reviews;Journal of Universal Computer Science,2016

2. New filtering scheme based on term weighting to improve object based opinion mining on tourism product reviews;Procedia Computer Science,2019

3. Sentiment analysis in tourism: capitalizing on big data;Journal of Travel Research,2019

4. Sentiments and opinions from twitter about peruvian touristic places using correspondence analysis;CEUR Workshop Proceedings,2017

5. Spanish pre-trained bert model and evaluation data,2020

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3