Dynamical evolution of trading behavior on anti-coordination game in complex networks

Author:

Bian Yue-tang,Xu Lu,Li Jin-Sheng,Liu Xia-qun

Abstract

Purpose The purpose of this paper is to explore the evolvement of investors’ behavior in stock market dynamically on the basis of non-cooperative strategy applied by investors in complex networks. Design/methodology/approach Using modeling and simulation research method, this study designs and conducts a mathematical modeling and its simulation experiment of financial market behavior according to research’s basic norms of complex system theory and methods. Thus the authors acquire needed and credible experimental data. Findings The conclusions drawn in this paper are as follows. The dynamical evolution of investors’ trading behavior is not only affected by the stock market network structure, but also by the risk dominance degree of certain behavior. The dynamics equilibrium of trading behavior’s evolvement is directly influenced by the risk dominance degree of certain behavior, connectivity degree and the heterogeneity of the stock market networks. Research limitations/implications This paper focuses on the dynamical evolvement of investors’ behavior on the basis of the hypothesis that common investors prefer to mimic their network neighbors’ behavior through different analysis by the strategy of anti-coordination game in complex network. While the investors’ preference and the beliefs among them are not easy to quantify, that is deterministic or stochastic as the environment changes, and is heterogeneous definitely. Thus, these limitations should be broken through in the future research. Originality/value This paper aims to address the dynamical evolvement of investors’ behavior in stock market networks on the principle of non-cooperative represented by anti-coordination game in networks for the first time, considering that investors prefer to mimic their network neighbors’ behavior through different analysis by the strategy of differential choosing in every time step. The methodology designed and used in this study is a pioneering and exploratory experiment.

Publisher

Emerald

Subject

Finance

Reference25 articles.

1. Statistical mechanics of complex networks;Reviews of Modern Physics,2002

2. A social network model of investment behaviour in the stock market;Physica A,2010

3. Emergence of scaling in random networks;Science,1999

4. A network model of investment and its robustness based on the intrinsic characteristics of the subjects in stock market;Journal of Industrial Engineering and Engineering Management,2013

5. Evolving dynamics of trading behavior based on coordination game in complex networks;Physica A,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3