Author:
Guo Xiaoting,Sun Changku,Wang Peng,Huang Lu
Abstract
Purpose
This paper aims to propose a hybrid method based on polynomial fitting bias self-compensation, grey forward-backward linear prediction (GFBLP) and moving average filter (MAF) for error compensation in micro-electromechanical system gyroscope signal especially under motion state.
Design/methodology/approach
The error compensation can be divided into two processes: bias correction and noise reduction. A polynomial drift angle fitting algorithm is used to correct bias before denoising processing. For noise reduction, operation can be taken in two stages: detection and processing. First, sample variances are used to judge motion state. According to the detection results, algorithmic system switches between grey GFBLP and MAF to ensure fast convergence rate and small steady-state error.
Findings
Experimental results show that the proposed method can correct bias effectively for practical gyroscope signal, and can eliminate noise effectively for both practical gyroscope signal and synthetic signal, which indicates the effectiveness of the proposed method.
Originality/value
Bias correction and noise reduction are considerations. Noise contained in practical or synthetic signal can be reduced rapidly and effectively, which benefits from the new idea of combination grey GFBLP, MAF and sample variances. And most importantly, it is applicable for signal denoising under arbitrary motion state condition, which is different from other methods where the convergence performance is seldom analyzed.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献