Road roughness acquisition and classification using improved restricted Boltzmann machine deep learning algorithm

Author:

Liu Qinghua,Sun Lu,Kornhauser Alain,Sun Jiahui,Sangwa Nick

Abstract

Purpose To realize classification of different pavements, a road roughness acquisition system design and an improved restricted Boltzmann machine deep neural network algorithm based on Adaboost Backward Propagation algorithm for road roughness detection is presented in this paper. The developed measurement system, including hardware designs and algorithm for software, constitutes an independent system which is low-cost, convenient for installation and small. Design/methodology/approach The inputs of restricted Boltzmann machine deep neural network are the vehicle vertical acceleration power spectrum and the pitch acceleration power spectrum, which is calculated using ADAMS finite element software. Adaboost Backward Propagation algorithm is used in each restricted Boltzmann machine deep neural network classification model for fine-tuning given its performance of global searching. The algorithm is first applied to road spectrum detection and experiments indicate that the algorithm is suitable for detecting pavement roughness. Findings The detection rate of RBM deep neural network algorithm based on Adaboost Backward Propagation is up to 96 per cent, and the false positive rate is below 3.34 per cent. These indices are both better than the other supervised algorithms, which also performs better in extracting the intrinsic characteristics of data, and therefore improves the classification accuracy and classification quality. Additionally, the classification performance is optimized. The experimental results show that the algorithm can improve performance of restricted Boltzmann machine deep neural networks. The system can be used for detecting pavement roughness. Originality/value This paper presents an improved restricted Boltzmann machine deep neural network algorithm based on Adaboost Backward Propagation for identifying the road roughness. Through the restricted Boltzmann machine, it completes pre-training and initializing sample weights. The entire neural network is fine-tuned through the Adaboost Backward Propagation algorithm, verifying the validity of the algorithm on the MNIST data set. A quarter vehicle model is used as the foundation, and the vertical acceleration spectrum of the vehicle center of mass and pitch acceleration spectrum were obtained by simulation in ADAMS as the input samples. The experimental results show that the improved algorithm has better optimization ability, improves the detection rate and can detect the road roughness more effectively.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference27 articles.

1. An optimized discrete neural network in embedded systems for road recognition;Engineering Applications of Artificial Intelligence,2012

2. Digital speed measurement system in the rubber production domain;Sensor World,2003

3. Pavement roughness detection and simulation based on BP neural network;Computer Simulation,2014

4. An optimizing BP neural algorithm based on genetic algorithm;Artificial Intelligence Review,2011

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3