Fast head detection in arbitrary poses using depth information

Author:

Hacinecipoglu Akif,Konukseven Erhan Ilhan,Koku Ahmet Bugra

Abstract

Purpose This study aims to develop a real-time algorithm, which can detect people even in arbitrary poses. To cover poor and changing light conditions, it does not rely on color information. The developed method is expected to run on computers with low computational resources so that it can be deployed on autonomous mobile robots. Design/methodology/approach The method is designed to have a people detection pipeline with a series of operations. Efficient point cloud processing steps with a novel head extraction operation provide possible head clusters in the scene. Classification of these clusters using support vector machines results in high speed and robust people detector. Findings The method is implemented on an autonomous mobile robot and results show that it can detect people with a frame rate of 28 Hz and equal error rate of 92 per cent. Also, in various non-standard poses, the detector is still able to classify people effectively. Research limitations/implications The main limitation would be for point clouds similar to head shape causing false positives and disruptive accessories (like large hats) causing false negatives. Still, these can be overcome with sufficient training samples. Practical implications The method can be used in industrial and social mobile applications because of its robustness, low resource needs and low power consumption. Originality/value The paper introduces a novel and efficient technique to detect people in arbitrary poses, with poor light conditions and low computational resources. Solving all these problems in a single and lightweight method makes the study fulfill an important need for collaborative and autonomous mobile robots.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference19 articles.

1. Anthropometry for a mix of different populations;Applied Ergonomics,1992

2. Deep learning-based automatic volumetric damage quantification using depth camera;Automation in Construction,2019

3. Histograms of oriented gradients for human detection,2005

4. Pedestrian detection: a benchmark,2009

5. The Pascal visual object classes (VOC) challenge;International Journal of Computer Vision,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3