Review on the wearable health-care monitoring system with robust motion artifacts reduction techniques

Author:

Prabakaran Aarthy,Rufus Elizabeth

Abstract

Purpose Wearables are gaining prominence in the health-care industry and their use is growing. The elderly and other patients can use these wearables to monitor their vitals at home and have them sent to their doctors for feedback. Many studies are being conducted to improve wearable health-care monitoring systems to obtain clinically relevant diagnoses. The accuracy of this system is limited by several challenges, such as motion artifacts (MA), power line interference, false detection and acquiring vitals using dry electrodes. This paper aims to focus on wearable health-care monitoring systems in the literature and provides the effect of MA on the wearable system. Also presents the problems faced while tracking the vitals of users. Design/methodology/approach MA is a major concern and certainly needs to be suppressed. An analysis of the causes and effects of MA on wearable monitoring systems is conducted. Also, a study from the literature on motion artifact detection and reduction is carried out and presented here. The benefits of a machine learning algorithm in a wearable monitoring system are also presented. Finally, distinct applications of the wearable monitoring system have been explored. Findings According to the study reduction of MA and multiple sensor data fusion increases the accuracy of wearable monitoring systems. Originality/value This study also presents the outlines of design modification of dry/non-contact electrodes to minimize the MA. Also, discussed few approaches to design an efficient wearable health-care monitoring system.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference78 articles.

1. Smart homes that monitor breathing and heart rate,2015

2. AliveCor (2020), “AliveCor kardia mobile 6L | 6 lead ECG device in India”, available at: www.alivecor.in/kardiamobile6l/ (accessed 5 May 2021).

3. The assessment and reduction of motion artifact in dry contact biopotential electrodes | Request PDF;Alper Cömert,2015

4. Comparison of motion artefact reduction methods and the implementation of adaptive motion artefact reduction in wearable electrocardiogram monitoring;Sensors ( Sensors),2020

5. Internet of things for smart healthcare: technologies, challenges, and opportunities;IEEE Access,2017

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3