Dynamic characteristics of resonant vibratory gyroscopes based on the damped Mathieu equation

Author:

Li Yan,Qu Yuanyuan,Zhang Yunjiu,Li Qingling

Abstract

Purpose This paper aims to develop resonant vibratory gyroscopes for high sensitive detection. The dynamic characteristics of resonant vibratory gyroscopes are investigated. Design/methodology/approach Firstly, the working principle and the dynamic output characteristics of the resonant vibratory gyroscope could be described by the damped Mathieu equation. Moreover, an approximate analytical method based on the small parameter perturbation has been used for the purpose of investigating the approximate solution of the damped Mathieu equation. Finally, to verify the feasibility of the approximate analytical method of the damped Mathieu equation, dynamic output characteristics’ experiments of the resonant vibratory gyroscope are built. Findings The theoretical analysis and numerical simulations show that the approximate solution of the damped Mathieu equation is close to the dynamic output characteristics of the resonant vibratory gyroscope. On the other hand, it is concluded from the tested result that there exists a correlation between the theoretical curve and the experimental data processing result, meaning the damped dynamics analytical method is effective in building resonant vibratory gyroscopes. Originality/value This paper seeks to establish a foundation for optimizing and testing the performance of the resonant vibratory gyroscope. To this end, the approximate analytical method of the damped Mathieu equation was discussed. The result of this research has proved that the dynamic characteristics based on the damped Mathieu equation is an effective approach and is instructional in the practical resonant sensor design.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference29 articles.

1. An implicit floquet analysis for rotorcraft stability evaluation;Journal of the American Helicopter Society,2001

2. Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation;Journal of Microelectromechanical Systems,2008

3. Modeling and performance study of a beam microgyroscope;Journal of Sound and Vibration,2010

4. Nonlinearity and hysteresis of resonant strain gauges;Journal of Microelectromechanical Systems,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3