Machine learning-based failure prediction in industrial maintenance: improving performance by sliding window selection

Author:

Leukel JoergORCID,González Julian,Riekert Martin

Abstract

PurposeMachine learning (ML) models are increasingly being used in industrial maintenance to predict system failures. However, less is known about how the time windows for reading data and making predictions affect performance. Therefore, the purpose of this research is to assess the impact of different sliding windows on prediction performance.Design/methodology/approachThe authors conducted a factorial experiment using high dimensional machine data covering two years of operation, taken from a real industrial case for the production of high-precision milled and turned parts. The impacts of different reading and prediction windows were tested for three ML algorithms (random forest, support vector machines and logistic regression) and four metrics (accuracy, precision, recall and F-score).FindingsThe results reveal (1) the critical role of the prediction window contingent upon the application domain, (2) a non-monotonic relationship between the reading window and performance, and (3) how sliding window selection can systematically be used to improve different facets of performance.Originality/valueThe study's findings advance the knowledge of ML-based failure prediction, by highlighting how systematic variation of two important but yet understudied factors contributes to the development of more useful prediction models.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Reference35 articles.

1. Predictive maintenance from event logs using wavelet-based features: an industrial application,2020

2. Integrated oversampling for imbalanced time series classification;IEEE Transactions on Knowledge and Data Engineering,2013

3. A systematic literature review of machine learning methods applied to predictive maintenance;Computers and Industrial Engineering,2019

4. LIBSVM;ACM Transactions on Intelligent Systems and Technology,2011

5. Fault diagnosis of blowout preventer system using artificial neural networks: a comparative study;International Journal of Quality and Reliability Management,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3