Critical analysis for big data studies in construction: significant gaps in knowledge

Author:

Madanayake Upeksha Hansini,Egbu Charles

Abstract

Purpose The purpose of this paper is to identify the gaps and potential future research avenues in the big data research specifically in the construction industry. Design/methodology/approach The paper adopts systematic literature review (SLR) approach to observe and understand trends and extant patterns/themes in the big data analytics (BDA) research area particularly in construction-specific literature. Findings A significant rise in construction big data research is identified with an increasing trend in number of yearly articles. The main themes discussed were big data as a concept, big data analytical methods/techniques, big data opportunities – challenges and big data application. The paper emphasises “the implication of big data in to overall sustainability” as a gap that needs to be addressed. These implications are categorised as social, economic and environmental aspects. Research limitations/implications The SLR is carried out for construction technology and management research for the time period of 2007–2017 in Scopus and emerald databases only. Practical implications The paper enables practitioners to explore the key themes discussed around big data research as well as the practical applicability of big data techniques. The advances in existing big data research inform practitioners the current social, economic and environmental implications of big data which would ultimately help them to incorporate into their strategies to pursue competitive advantage. Identification of knowledge gaps helps keep the academic research move forward for a continuously evolving body of knowledge. The suggested new research avenues will inform future researchers for potential trending and untouched areas for research. Social implications Identification of knowledge gaps helps keep the academic research move forward for continuous improvement while learning. The continuously evolving body of knowledge is an asset to the society in terms of revealing the truth about emerging technologies. Originality/value There is currently no comprehensive review that addresses social, economic and environmental implications of big data in construction literature. Through this paper, these gaps are identified and filled in an understandable way. This paper establishes these gaps as key issues to consider for the continuous future improvement of big data research in the context of the construction industry.

Publisher

Emerald

Subject

Civil and Structural Engineering,Building and Construction,Architecture,Engineering (miscellaneous),Urban Studies

Reference109 articles.

1. Integrated pavement management system with a markovian prediction model;Journal of Transportation Engineering,2004

2. Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach;Applied Soft Computing,2009

3. Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers;Advanced Engineering Informatics,2015

4. Bankruptcy prediction of construction businesses: towards a big data analytics approach,2015

5. Big-data approach for three-dimensional building extraction from aerial laser scanning;Journal of Computing in Civil Engineering,2016

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3