The multi-objective optimization of a non-pneumatic wheel based on its life prediction

Author:

Xiao Zhen,Zhao Youqun,Lin Fen,Zhu Mingmin,Deng Yaoji,Zang Liguo

Abstract

Purpose A novel non-pneumatic safety tire, namely mechanical elastic wheel (ME-Wheel), has been developed recently to solve problems, including tire bursting and flat tire, of typical pneumatic tires. This paper aims to predict the life of the ME-Wheel accurately and settle the problem of lower lifespan. Design/methodology/approach This study proposes a new method to establish a novel model of virtual proving ground based on finite element analysis, and by combining with the random vibration damage analysis method, the life of an ME-Wheel is predicted precisely. Next, the weak parts and infinite life parts of the ME-Wheel are investigated from the perspective of constant life design, and an approximate response surface model is developed, which is suitable for the ME-Wheel. Then, the optimal results of the ME-Wheel are obtained, including tire modal, mass and its lifetime. Findings It is found that the proposed methods can provide a reliable theoretical basis for further improving the structural design and material selection of ME-Wheel parts. The results show that the improved ME-Wheel can reduce the weight and greatly improve the ability of anti-resonance, and the lifetime of ME-Wheel has significantly improved. Originality/value A new type of non-pneumatic tire (ME-Wheel) has been developed to avoid problems with traditional tires, such as tire leaking or puncture. A new method to establish a novel model of virtual proving ground based on finite element analysis has been proposed. The weakest key component of the ME-Wheel is determined. The life, mass and modal of the ME-Wheel are optimized.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference27 articles.

1. Increasing the tire life span by means of water cooling;International Journal of Mining Metallurgy and Mechanical Engineering,2013

2. Numerical study of selected military vehicle chassis subjected to blast loading in terms of tire strength improving;Bulletin of the Polish Academy of Sciences Technical Sciences,2015

3. Modeling and optimization I: usability of response surface methodology;Journal of Food Engineering,2007

4. The influence of the loop power-flow on the tires’ life span of a vehicle;Procedia Economics and Finance,2015

5. Numerical analysis of the dynamic interaction between a non-pneumatic mechanical elastic wheel and soil containing an obstacle;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3