Sensitivity analysis of DEM prediction for sliding wear by single iron ore particle

Author:

Chen Guangming,Schott Dingena L.,Lodewijks Gabriel

Abstract

Purpose Sliding wear is a common phenomenon in the iron ore handling industry. Large-scale handling of iron ore bulk-solids causes a high amount of volume loss from the surfaces of bulk-solids-handling equipment. Predicting the sliding wear volume from equipment surfaces is beneficial for efficient maintenance of worn equipment. Recently, the discrete element method (DEM) simulations have been utilised to predict the wear by bulk-solids. However, the sensitivity of wear prediction subjected to DEM parameters has not been systemically investigated at single particle level. To ensure the wear predictions by DEM are accurate and stable, this study aims to conduct the sensitivity analysis at the single particle level. Design/methodology/approach In this research, pin-on-disc wear tests are modelled to predict the sliding wear by individual iron ore particles. The Hertz–Mindlin (no slip) contact model is implemented to simulate interactions between particle (pin) and geometry (disc). To quantify the wear from geometry surface, a sliding wear equation derived from Archard’s wear model is adopted in the DEM simulations. The accuracy of the pin-on-disc wear test simulation is assessed by comparing the predicted wear volume with that of the theoretical calculation. The stability is evaluated by repetitive tests of a reference case. At the steady-state wear, the sensitivity analysis is done by predicting sliding wear volumes using the parameter values determined by iron ore-handling conditions. This research is carried out using the software EDEM® 2.7.1. Findings Numerical errors occur when a particle passes a joint side of geometry meshes. However, this influence is negligible compared to total wear volume of a wear revolution. A reference case study demonstrates that accurate and stable results of sliding wear volume can be achieved. For the sliding wear at steady state, increasing particle density or radius causes more wear, whereas, by contrast, particle Poisson’s ratio, particle shear modulus, geometry mesh size, rotating speed, coefficient of restitution and time step have no impact on wear volume. As expected, increasing indentation force results in a proportional increase. For maintaining wear characteristic and reducing simulation time, the geometry mesh size is recommended. To further reduce simulation time, it is inappropriate using lower particle shear modulus. However, the maximum time step can be increased to 187% TR without compromising simulation accuracy. Research limitations/implications The applied coefficient of sliding wear is determined based on theoretical and experimental studies of a spherical head of iron ore particle. To predict realistic volume loss in the iron ore-handling industry, this coefficient should be experimentally determined by taking into account the non-spherical shapes of iron ore particles. Practical implications The effects of DEM parameters on sliding wear are revealed, enabling the selections of adequate values to predict sliding wear in the iron ore-handling industry. Originality/value The accuracy and stability to predict sliding wear by using EDEM® 2.7.1 are verified. Besides, this research accelerates the calibration of sliding wear prediction by DEM.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference34 articles.

1. Contact and rubbing of flat surfaces;Journal of Applied Physics,1953

2. Standard test method for wear testing with a pin-on-disk apparatus;ASTM,2000

3. Contact parameter estimation for DEM simulation of iron ore pellet handling;Powder Technology,2013

4. A study of the mechanisms of abrasive wear for ductile metals under wet and dry three-body conditions;Wear,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3