Fractional order plasma modeling based on linear polarization of LASER light: an Atangana–Baleanu Caputo approach

Author:

Zubair TamourORCID,Usman Muhammad,Lu TiaoORCID

Abstract

PurposeThe purpose of this offered research is to articulate a multifaceted kind of highly unstable initial perturbation and further analyze the performance of the plasma particles for time-fractional order evaluation.Design/methodology/approachFor this purpose, the authors designed specific geometry and further interpreted it into the mathematical model using the concepts of the Vlasov Maxwell system. The suggested algorithm is based on the finite-difference and spectral estimation philosophy. The management of time and memory in generic code for computational purposes is also discussed.FindingsThe main purpose is to analyze the fractional behavior of plasma particles and also the capability of the suggested numerical algorithm. Due to initial perturbations, there are a lot of sudden variations that occurred in the formulated system. Graphical behavior shows that SR parameter produces devastation as compared to others. The variation of fractional parameter between the defend domain demonstrates the hidden pictures of plasma particles. The design scheme is efficient, convergent and has the capability to cover the better physics of the problem.Practical implicationsPlasma material is commonly used in different areas of science. Therefore, in this paper, the authors increase the capability of the mathematical plasma model with specific geometry, and further suitable numerical algorithm is suggested with detailed physical analysis of the outcomes. The authors gave a new direction to study the performance of plasma particles under the influence of LASER light.Originality/valueIn the recent era, science has produced a lot of advancements to study and analyze the physical natural process, which exist everywhere in the real word. On behalf of this current developments, it is now insufficient to study the first-order time evaluation of the plasma particles. One needs to be more precise and should move toward the bottomless state of it, that is, macroscopic and microscopic time-evaluation scales, and it is not wrong to say that there exits a huge gap, to study the time evaluation in this discussed manner. The presented study is entirely an advanced and efficient way to investigate the problem into the new directions. The capability of the proposed algorithm and model with fractional concepts can fascinate the reader to extend to the other dimensions.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference34 articles.

1. A comparative study of convective fluid motion in rotating cavity via Atangana–Baleanu and Caputo–Fabrizio fractal–fractional differentiations;European Physical Journal Plus,2020

2. Role of non-integer and integer order differentiations on the relaxation phenomena of viscoelastic fluid;Physica Scripta,2020

3. Functionality of circuit via modern fractional differentiations;Analog Integrated Circuits and Signal Processing,2019

4. Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model;Chaos, Solitons and Fractals,2016

5. A generalized groundwater flow equation using the concept of variable-order derivative;Boundary Value Problems,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Analysis of Quantitative Evaluation of Ideological and Political System of Engineering Management Course Based on Cluster Analysis Algorithm;Proceedings of the 2023 4th International Conference on Education, Knowledge and Information Management (ICEKIM 2023);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3