Pervasive computing in the context of COVID-19 prediction with AI-based algorithms

Author:

S. Magesh,V.R. Niveditha,P.S. Rajakumar,S. Radha RamMohan,L. Natrayan

Abstract

Purpose The current and on-going coronavirus (COVID-19) has disrupted many human lives all over the world and seems very difficult to confront this global crisis as the infection is transmitted by physical contact. As no vaccine or medical treatment made available till date, the only solution is to detect the COVID-19 cases, block the transmission, isolate the infected and protect the susceptible population. In this scenario, the pervasive computing becomes essential, as it is environment-centric and data acquisition via smart devices provides better way for analysing diseases with various parameters. Design/methodology/approach For data collection, Infrared Thermometer, Hikvision’s Thermographic Camera and Acoustic device are deployed. Data-imputation is carried out by principal component analysis. A mathematical model susceptible, infected and recovered (SIR) is implemented for classifying COVID-19 cases. The recurrent neural network (RNN) with long-term short memory is enacted to predict the COVID-19 disease. Findings Machine learning models are very efficient in predicting diseases. In the proposed research work, besides contribution of smart devices, Artificial Intelligence detector is deployed to reduce false alarms. A mathematical model SIR is integrated with machine learning techniques for better classification. Implementation of RNN with Long Short Term Memory (LSTM) model furnishes better prediction holding the previous history. Originality/value The proposed research collected COVID −19 data using three types of sensors for temperature sensing and detecting the respiratory rate. After pre-processing, 300 instances are taken for experimental results considering the demographic features: Sex, Patient Age, Temperature, Finding and Clinical Trials. Classification is performed using SIR mode and finally predicted 188 confirmed cases using RNN with LSTM model.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference30 articles.

1. Covid-19 outbreak prediction with machine learning,2020

2. BORON: an ultra-lightweight and low power encryption design for pervasive computing;Frontiers of Information Technology and Electronic Engineering,2017

3. A survey of people-centric sensing studies utilizing mobile phone sensors;Journal of Ambient Intell.Smart Envrion,2017

4. Origin and evolution of pathogenic coronaviruses;Nature Reviews Microbiology,2019

5. Developing a trust model for pervasive computing based on apriori association rules learning and bayesian classification;Soft Computing,2017

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Evaluation of Simulation-Driven Metaheuristic Algorithms;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

2. Optimizing Optical Fiber Path in Wavelength Division Multiplexing Networks Using Particle Swarm Optimization;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

3. Meta-Heuristic Optimization for Enhanced Sensor-Based Health Monitoring in Cloud Computing Environments;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

4. Machine Learning in Industrial IoT Applications for Safety, Security, Asset Localization, Quality Assurance, and Sustainability in Smart Production;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

5. Experimental Investigation and Comparative Analysis of an Efficient Machine Learning Algorithm for Distribution System Reconfiguration;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3