An analysis of attitude of general public toward COVID-19 crises – sentimental analysis and a topic modeling study

Author:

S.V. Praveen,Ittamalla Rajesh

Abstract

Purpose It has been eight months into the global pandemic health crises COVID-19, yet the severity of the crises is just getting worse in many parts of the world. At this stage, it is essential to understand and observe the general attitude of the public toward COVID crises and the major concerns the public has voiced out and how it varies across months. Understanding the impact that the COVID-19 crises have created also helps policymakers and health-care organizations access the primary steps that need to be taken for the welfare of the community. The purpose of this study is to understand the general public's response towards COVID-19 crises and the major issues that concerns them. Design/methodology/approach For the analysis, data were collected from Twitter. Tweets regarding COVID-19 crises were collected from February 1, 2020, to June 27, 2020. In all, 433,195 tweets were used for this study. Natural language processing (NLP), which is a part of Machine learning, was used for this study. NLP was used to track the changes in the general public's sentiment toward COVID-19 crises and LDA was used to understand the issues that shape the general public's sentiments the crises time. Using Python library Wordcloud, the authors further derived how the primary concerns regarding COVID crises various from February to June of the year 2020. Findings This study was conducted in two parts. Study 1 results showed that the attitude of the general public toward COVID crises was reasonably neutral at the beginning of the crises (Month of February). As the crises become severe, the sentiments toward COVID increasingly become negative yet a considerable percentage of neutral sentiments existed even at the peak time of the crises. Study 2 finds out that issues including the severity of the disease, Precautionary measures need to be taken, and Personal issues like unemployment and traveling during the pandemic time were identified as the public's primary concerns. Originality/value The research adds value to the literature on understanding the major issues and concerns, the public voices out about the current ongoing pandemic. To the best of the authors’ knowledge, this is the first study with an extended period of timeframe (Five months). In this research, the authors have collected data till June for analysis that makes the results and findings more relevant to the current time.

Publisher

Emerald

Subject

Library and Information Sciences,General Computer Science

Reference33 articles.

1. Contextual phrase-level polarity analysis using lexical affect scoring and syntactic n-grams,2009

2. Robust sentiment detection on twitter from biased and noisy data,2010

3. Latent dirichlet allocation;Journal of Machine Learning Research,2003

4. Topic models,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3