Delay-independent stabilization of nonlinear systems with multiple time-delays and its application in chaos synchronization of Rössler system

Author:

He Ping,Fan Tao

Abstract

Purpose – The purpose of this paper is with delay-independent stabilization of nonlinear systems with multiple time-delays and its application in chaos synchronization of Rössler system. Design/methodology/approach – Based on linear matrix inequality and algebra Riccati matrix equation, the stabilization result is derived to guarantee asymptotically stable and applicated in chaos synchronization of Rössler chaotic system with multiple time-delays. Findings – A controller is designed and added to the nonlinear system with multiple time-delays. The stability of the nonlinear system at its zero equilibrium point is guaranteed by applying the appropriate controller signal based on linear matrix inequality and algebra Riccati matrix equation scheme. Another effective controller is also designed for the global asymptotic synchronization on the Rössler system based on the structure of delay-independent stabilization of nonlinear systems with multiple time-delays. Numerical simulations are demonstrated to verify the effectiveness of the proposed controller scheme. Originality/value – The introduced approach is interesting for delay-independent stabilization of nonlinear systems with multiple time-delays and its application in chaos synchronization of Rössler system.

Publisher

Emerald

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Delay-range-dependent ℋ∞ synchronization approaches for time-delay chaotic systems;International Journal of Computer Mathematics;2021-07-30

2. Chaos control and circuit implementation of a class of double‐wing chaotic system;International Journal of Numerical Modelling: Electronic Networks, Devices and Fields;2019-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3