EYE-YOLO: a multi-spatial pyramid pooling and Focal-EIOU loss inspired tiny YOLOv7 for fundus eye disease detection

Author:

Kumar AkhilORCID,Dhanalakshmi R.

Abstract

PurposeThe purpose of this work is to present an approach for autonomous detection of eye disease in fundus images. Furthermore, this work presents an improved variant of the Tiny YOLOv7 model developed specifically for eye disease detection. The model proposed in this work is a highly useful tool for the development of applications for autonomous detection of eye diseases in fundus images that can help and assist ophthalmologists.Design/methodology/approachThe approach adopted to carry out this work is twofold. Firstly, a richly annotated dataset consisting of eye disease classes, namely, cataract, glaucoma, retinal disease and normal eye, was created. Secondly, an improved variant of the Tiny YOLOv7 model was developed and proposed as EYE-YOLO. The proposed EYE-YOLO model has been developed by integrating multi-spatial pyramid pooling in the feature extraction network and Focal-EIOU loss in the detection network of the Tiny YOLOv7 model. Moreover, at run time, the mosaic augmentation strategy has been utilized with the proposed model to achieve benchmark results. Further, evaluations have been carried out for performance metrics, namely, precision, recall, F1 Score, average precision (AP) and mean average precision (mAP).FindingsThe proposed EYE-YOLO achieved 28% higher precision, 18% higher recall, 24% higher F1 Score and 30.81% higher mAP than the Tiny YOLOv7 model. Moreover, in terms of AP for each class of the employed dataset, it achieved 9.74% higher AP for cataract, 27.73% higher AP for glaucoma, 72.50% higher AP for retina disease and 13.26% higher AP for normal eye. In comparison to the state-of-the-art Tiny YOLOv5, Tiny YOLOv6 and Tiny YOLOv8 models, the proposed EYE-YOLO achieved 6–23.32% higher mAP.Originality/valueThis work addresses the problem of eye disease recognition as a bounding box regression and detection problem. Whereas, the work in the related research is largely based on eye disease classification. The other highlight of this work is to propose a richly annotated dataset for different eye diseases useful for training deep learning-based object detectors. The major highlight of this work lies in the proposal of an improved variant of the Tiny YOLOv7 model focusing on eye disease detection. The proposed modifications in the Tiny YOLOv7 aided the proposed model in achieving better results as compared to the state-of-the-art Tiny YOLOv8 and YOLOv8 Nano.

Publisher

Emerald

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3