Effect of fin density and fin height on flow-induced vibration behavior of finned tube arrays subjected to water cross flow

Author:

Desai Sandeep RangraoORCID,Sonare Mangalsing Narsing

Abstract

PurposeThe prediction of critical velocity at instability threshold for shell and tube heat exchangers is important to avoid failure of tubes as a result of flow-induced vibrations due to water cross flow. The flow-induced vibration in finned tube heat exchangers is affected by various parameters such as fin height, fin pitch, fin material, tube array, pitch ratio, fin type, fluid velocity etc. In this paper, an experimental investigation of fluid elastic instability in shell and tube heat exchangers is carried out by subjecting normal square finned tube arrays of pitch ratio 1.79 to water cross flow.Design/methodology/approachThe five tube arrays, namely plain array, two finned tube arrays with 3 fpi and 9 fpi fin density, and two finned tube arrays with 3 mm and 6 mm fin height are tested in the experimental test setup with water flow loop and vibration measurement system. The research objective is to evaluate the effect of fin density and fin height on the instability threshold. The critical velocity at instability threshold is determined to characterize the fluid elastic instability behavior of different tube arrays. The vortex shedding behavior of the tube arrays is also studied by determining Strouhal number corresponding to the small peaks before fluid elastic instability.FindingsThe fluid elastic instability behavior of the tube arrays was found to be the function of fin tube parameters. The experimental results indicate that an increase in fin density and fin height results in delaying the instability threshold for finned tube arrays. It is also observed that critical velocity at instability is increased for finned tube arrays compared to plain tube arrays of the same pitch ratio. The design modifications in the outer box have resulted in further reduction in the natural frequency. This enabled to reach clear instability for all the five-tube arrays.Originality/valueThe research data add the value to the present body of knowledge by knowing the effect of fin height and fin density on the fluid elastic instability threshold of normal square finned tube arrays subjected to water cross flow.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference44 articles.

1. Near-wake characteristics and acoustic resonance excitation of crimped spirally finned cylinders in cross-flow;Journal of Pressure Vessel Technology, Transactions of the ASME,2018

2. Equivalent diameter for predicting vortex shedding of finned cylinders in cross flow,2021

3. Arafa, N. (2017), “Flow-sound interaction mechanism of a single finned”, Nadim Arafa A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctorate of Philosophy.

4. Effect of fin geometry on flow-induced vibration response of a finned tube in a tube bundle;Journal of Applied Fluid Mechanics,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3