A thermodynamic framework to analyze the thermal shock response in an anisotropic hollow cylinder with energy dissipation

Author:

Biswas SiddharthaORCID,Shaw Soumen

Abstract

Purpose The purpose of this paper is to analyze the thermal shock response on the deformation of circular hollow cylinder in a thermodynamically consistent manner. Design/methodology/approach The investigation is carried out under the light of generalized thermoelasticity theory with energy dissipation. In order to obtain the analytical expressions of the components of stress and strain fields, appropriate integral transform technique is adopted and the salient features are emphasized. Findings It has been observed that the existence of energy dissipation can minimize the development of the stress components into the cylindrical wall. Since more amount of heat is propagate into the medium in a short period of time consequently, the medium deformed in a high rate in presence of energy dissipation. Two special phenomena are also revealed in the particular cases. Originality/value The numerical simulated results are demonstrated through a numerous diagrams and some important observations are explained. This work may be helpful for those researchers who are devoted on several types of heat or fluid flow into the pipeline made with anisotropic solids.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3