The effect of the properties of LaxNd8‒xB6 (x = 1,2,6)

Author:

Bozada CengizORCID,Ozturk Zihni

Abstract

PurposeNanocrystalline LaB6, NdB6, Nd-doped LaB6 and La-doped NdB6 have been studied using the density functional theory (DFT) to study their electronic, optical and mechanical characteristics. The purpose of this paper is to address this issue.Design/methodology/approachNanocrystalline LaB6, NdB6, Nd-doped LaB6 and La-doped NdB6 have been studied using the DFT to study their electronic, optical and mechanical characteristics. The calculated lattice constants of LaB6, NdB6, Nd-doped LaB6 and La-doped NdB6 were 4.157, 4.118, 4.267 and 4.449, respectively. The lattice constant of La7Nd1B6 was increased when Nd is doped into LaB6. B p comprised the uppermost valence bands (VBs), whereas B s comprised the lowermost conduction bands (CBs). The authors’ results showed that La doping reduced the work function of NdB6 and increased its thermionic emission characteristics.FindingsThe authors’ results showed that La doping reduced the work function of NdB6 and increased its thermionic emission characteristics.Originality/valueThe work function of LaB6 was 2.7 eV, which is higher than that of La1Nd7B6 (2.64 eV).

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference26 articles.

1. Low temperature resistivity of rare-earth hexaborides;Physics Letters A,1984

2. Magnetoresistance and magnetic ordering in praseodymium and neodymium hexaborides;Journal of Experimental and Theoretical Physics,2009

3. Rare earth hexaboride nanowires: general synthetic design and analysis using atom probe tomography;Chemistry of Materials,2011

4. Hexaboride ceramics as PEMFC electrode catalysts supports;ECS Transactions,2006

5. Surface resonance of the (2 × 1) reconstructed lanthanum hexaboride (001)-cleavage plane: a combined STM and DFT study;Physical Review B: Condensed Matter,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3