Research and development of autism diagnosis information system based on deep convolution neural network and facial expression data

Author:

Zhao WangORCID,Lu Long

Abstract

PurposeFacial expression provides abundant information for social interaction, and the analysis and utilization of facial expression data are playing a huge driving role in all areas of society. Facial expression data can reflect people's mental state. In health care, the analysis and processing of facial expression data can promote the improvement of people's health. This paper introduces several important public facial expression databases and describes the process of facial expression recognition. The standard facial expression database FER2013 and CK+ were used as the main training samples. At the same time, the facial expression image data of 16 Chinese children were collected as supplementary samples. With the help of VGG19 and Resnet18 algorithm models of deep convolution neural network, this paper studies and develops an information system for the diagnosis of autism by facial expression data.Design/methodology/approachThe facial expression data of the training samples are based on the standard expression database FER2013 and CK+. FER2013 and CK+ databases are a common facial expression data set, which is suitable for the research of facial expression recognition. On the basis of FER2013 and CK+ facial expression database, this paper uses the machine learning model support vector machine (SVM) and deep convolution neural network model CNN, VGG19 and Resnet18 to complete the facial expression recognition.FindingsIn this study, ten normal children and ten autistic patients were recruited to test the accuracy of the information system and the diagnostic effect of autism. After testing, the accuracy rate of facial expression recognition is 81.4 percent. This information system can easily identify autistic children. The feasibility of recognizing autism through facial expression is verified.Research limitations/implicationsThe CK+ facial expression database contains some adult facial expression images. In order to improve the accuracy of facial expression recognition for children, more facial expression data of children will be collected as training samples. Therefore, the recognition rate of the information system will be further improved.Originality/valueThis research uses facial expression data and the latest artificial intelligence technology, which is advanced in technology. The diagnostic accuracy of autism is higher than that of traditional systems, so this study is innovative. Research topics come from the actual needs of doctors, and the contents and methods of research have been discussed with doctors many times. The system can diagnose autism as early as possible, promote the early treatment and rehabilitation of patients, and then reduce the economic and mental burden of patients. Therefore, this information system has good social benefits and application value.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference26 articles.

1. Is there a “language of the eyes”? Evidence from normal adults, and adults with autism or asperger syndrome;Visual Cognition,1997

2. Facial tracking and facial expression recognition based on in-depth learning,2018

3. Research on face expression recognition based on Kernel relieff,2018

4. Research progress on etiology and treatment of autism;Chinese Science: Life Science,2015

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3