Applying STEM and extended reality technologies to explore students' artificial intelligence learning performance and behavior for sustainable development goals

Author:

Su Yu-Sheng,Tseng Wen-Ling,Cheng Hung-Wei,Lai Chin-FengORCID

Abstract

PurposeTo support achieving sustainable development goals (SDGs), we integrated science, technology, engineering and math (STEM) and extended reality technologies into an artificial intelligence (AI) learning activity. We developed Feature City to facilitate students' learning of AI concepts. This study aimed to explore students' learning outcomes and behaviors when using Feature City.Design/methodology/approachJunior high school students were the subjects who used Feature City in an AI learning activity. The learning activity consisted of 90-min sessions once per week for five weeks. Before the learning activity, the teacher clarified the learning objectives and administered a pretest. The teacher then instructed the students on the features, supervised learning and unsupervised learning units. After the learning activity, the teacher conducted a posttest. We analyzed the students' prior knowledge and learning performance by evaluating their pretest and posttest results and observing their learning behaviors in the AI learning activity.Findings(1) Students used Feature City to learn AI concepts to improve their learning outcomes. (2) Female students learned more effectively with Feature City than male students. (3) Male students were more likely than female students to complete the learning tasks in Feature City the first time they used it.Originality/valueWithin SDGs, this study used STEM and extended reality technologies to develop Feature City to engage students in learning about AI. The study examined how much Feature City improved students' learning outcomes and explored the differences in their learning outcomes and behaviors. The results showed that students' use of Feature City helped to improve their learning outcomes. Female students achieved better learning outcomes than their male counterparts. Male students initially exhibited a behavioral pattern of seeking clarification and error analysis when learning AI education, more so than their female counterparts. The findings can help teachers adjust AI education appropriately to match the tutorial content with students' AI learning needs.

Publisher

Emerald

Reference42 articles.

1. A digital game based learning approach for effective curriculum transaction for teaching-learning of artificial intelligence and machine learning,2022

2. Small-group, computer-mediated argumentation in middle-school classrooms: the effects of gender and different types of online teacher guidance;British Journal of Educational Psychology,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3