Simultaneous arrival of multiple UAVs under imperfect communication

Author:

Makhdoom Iftikhar H.,Shi‐Yin Qin

Abstract

PurposeThe purpose of this paper is to propose a new algorithm for in‐mission trajectories and speed adjustment of multiple unmanned aerial vehicles (UAVs) participating in a mission that requires them to arrive at target location simultaneously with switching and imperfect communication among the vehicles.Design/methodology/approachThis algorithm, programmed at each UAV level, is based on the repeated consensus seeking among the participating vehicles about the time‐on‐target (ToT) through an imperfect inter‐vehicle communication link. The vehicles exchange their individual ToT values repeatedly for a particular duration to pick the highest value among all the vehicles in communication. A consensus confidence flag is set high when consensus is successful. After every consensus cycle with high confidence value, the mission adjustment is carried out by computing difference value between ToT consensus and a threshold value. For the difference values higher than a certain limit, vehicle's trajectory is adjusted by in‐mission insertion of new waypoint (WP) and for lower values the vehicle's speed is varied under allowable limits. The consensus seeking followed by the mission adjustment is repeated periodically to quash the imperfect communication effects.FindingsA mathematical analysis has been carried out to establish the conditions for convergence of the algorithm. The simultaneous arrival of the vehicles subjected to switching communication is achieved only when the union of the switching links during the consensus period enables a vehicle to receive information from all the other vehicles and the switching rate is sufficiently high. This algorithm has been tested in a 6‐degree‐of‐freedom (DoF) multiple UAV simulation environment and achieves simultaneous arrival of multiple fixed wing UAVs under imperfect communication links that meets the aforementioned conditions.Research limitations/implicationsThe presented algorithm and design strategy can be extended for other types of cooperative control missions where certain variable of interest is shared among all the vehicles over imperfect communication environment. The design is modular in functionality and can be incorporated into existing vehicles or simulations.Originality/valueThis research presents a new consensus algorithm that repeatedly performs polling of ToT among the vehicles through intermittent communication. The continual nature of consensus seeking covers the weakness of the imperfect communication. A two‐level mission adjustment provides better accuracy in simultaneous arrival at the target location.

Publisher

Emerald

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3