Attitude motion of spacecraft during oblique solar panel deployment

Author:

Zhengfeng Bai,Yang Zhao

Abstract

PurposeThe purpose of this paper is to establish the dynamics model of spacecraft during deployment of oblique solar panel using Auto Dynamic Analysis of Mechanical System (ADAMS) and to study the attitude motion of the spacecraft system during the oblique solar panel deployment.Design/methodology/approachFor the case of an oblique solar panel on spacecraft, the dynamics virtual prototype model of deployment of oblique solar panels on spacecraft is established and the dynamics simulation is carried out using ADAMS. The effects of solar panel deployment on the attitude motion of spacecraft with different oblique angles are studied and the attitude motion regularities of spacecraft system are discussed. First, the effects on attitude motion of spacecraft are compared between the normal solar panel deployment and oblique solar panel deployment on a spacecraft. Then the attitude motion of spacecraft during the deployment of solar panel with different oblique angles on spacecraft is studied.FindingsThe effects of oblique angle of solar panel deployment on the attitude motion of spacecraft are significant in yaw axis. The bigger the oblique angle, the bigger the changes of yaw angle of spacecraft. However, the bigger the oblique angle, the smaller the changes of roll angle of spacecraft. The effects of oblique angle on pitch angle of spacecraft are slight.Practical implicationsProviding a practical method to study the attitude motion of spacecraft system during deployment of solar panel and improving the engineering application of spacecraft system, which put forward up spacecraft system to the practical engineering.Originality/valueThe paper is a useful reference for engineering design of a spacecraft attitude control system and ground text.

Publisher

Emerald

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3