Demand forecasting in the beauty industry using fuzzy inference systems

Author:

Souza Ricardo Felicio,Wanke Peter,Correa Henrique

Abstract

Purpose This study aims to analyze the performance of four different fuzzy inference system-based forecasting tools using a real case company. Design/methodology/approach The forecasting tools were tested using 27 products of the nail polish line of a multinational beauty company and the performance of said tools was compared to those of the company’s previous forecasting methods that were basically qualitative (informal and intuition-based). Findings The performance of the methods analyzed was compared by using mean absolute percentage error. It was possible to determine the characteristics and conditions that make each model the best for each situation. The main takeaways were that low kurtosis, negatively skewed demand time-series and longer horizon forecasts that favor the fuzzy inference system-based models. Besides, the results suggest that the fuzzy forecasting tools should be preferred for longer horizon forecasts over informal qualitative methods. Originality/value Notwithstanding the proposed hybrid modeling approach based on fuzzy inference systems, our research offers a relevant contribution to theory and practice by shedding light on the segmentation and selection of forecasting models, both in terms of time-series characteristics and forecasting horizon. The proposed fuzzy inference systems showed to be particularly useful not only when time-series distributions present no clear central tendency (that is, they are platykurtic or dispersed around a large plateau around the median, which is the characteristic of negative kurtosis), but also when mode values are greater than median values, which in turn are greater than mean values. This large tail to the left (negative skewness) is typical of successful products whose sales are ramping up in early stages of their life cycle. For these, fuzzy inference systems may help managers screen out forecast bias and, therefore, lower forecast errors. This behavior also occurs when managers deal with forecasts of longer horizons. The results suggest that further research on fuzzy inference systems hybrid approaches for forecasting should emphasize short-term forecasting by trying to better capture the “tribal” managerial knowledge instead of focusing on less dispersed and slower moving products, where the purely qualitative forecasting methods used by managers tend to perform better in terms of their accuracy.

Publisher

Emerald

Subject

Management Science and Operations Research,Strategy and Management,General Decision Sciences

Reference95 articles.

1. Caderno de tendencias 2014/2015ABIHPEC;ABIHPEC,2015

2. A decision support system for demand forecasting in the clothing industry;International Journal of Clothing Science and Technology,2012

3. Design of an adaptive fuzzy-based control system using genetic algorithm over a Ph titration process;International Journal of Recent Research and Applied Studies,2013

4. An overview of genetic algorithms: Part 1, fundamentals;University Computing,1993

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3