Adaptive virtual team planning and coordination: a mathematical programming approach

Author:

Garcia Christopher

Abstract

Purpose The rise of remote work increasingly requires organizations to coordinate a single large, consolidated talent pool into ad-hoc, short-term project teams on demand. This problem involves many simultaneous considerations including project revenues and rejection costs, conflicting projects and roles, worker assignment costs, worker utilization preferences and limits, worker reassignment costs, and arbitrary role start and end times. Moreover, plans must be continuously updated in response to changing circumstances. This paper addresses the problem of dynamic virtual team planning and coordination. Design/methodology/approach We show this problem is NP-hard and provide a dynamic mixed integer linear programming (MILP) formulation for both optimal initial plan generation as well as continuous plan adjustment and re-optimization. We utilized a factorial experiment design to generate benchmark problems spanning a wide range of characteristics and conducted extensive computational experimentation using a common MILP solver. Findings Exactly optimal solutions to large, realistically sized problems were consistently obtained in short amounts of time. All observed solution times were sufficient to support the operational decision-making requirements of real-world virtual team coordination, demonstrating the viability of this approach. Practical implications The approach developed in this research can enable organizations to optimally coordinate virtual teams on a large scale and continually adjust plans in response to changing circumstances, all in an automated manner. Originality/value This paper addresses a new and complex problem of increasing importance to organizations due to the rise in remote work. We provide a problem formulation and exact approach for optimally solving both the planning and re-planning aspects of this problem.

Publisher

Emerald

Reference34 articles.

1. Online team formation in social networks,2012

2. Balancing stability and efficiency in team formation as a generalized roommate problem;Naval Research Logistics (NRL),2023

3. Virtual teaming in the automotive supply chain;Team Performance Management: An International Journal,1999

4. Project team selection using fuzzy optimization approach;Cybernetics and Systems,2007

5. Managing a virtual workplace;Academy of Management Perspectives,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3