Author:
Yang Zongyao,Shan Yong,Zhang Jingzhou
Abstract
Purpose
This study aims to investigate the effects of exhaust direction on exhaust plume and helicopter infrared radiation in hover and cruise status.
Design/methodology/approach
Four exhaust modes are concerned, and the external flow field and fuselage temperature field are calculated by numerical simulation. The infrared radiation intensity distributions of the four models in hovering and cruising states are computed by the ray-tracing method.
Findings
Under the hover status, the exhaust plume is deflected to flow downward after it exhausts from the nozzle exit, upon the impact of the main-rotor downwash. Besides, the exhaust plume shows a “swirling” movement following the main-rotor rotational direction. The forward-flight flow helps prevent the hot exhaust plume from a collision with the helicopter fuselage generally for the cruise status. In general, the oblique-upward exhaust mode provides moderate infrared radiation intensities in all of the viewing directions, either under the hover or the cruise status. Compared with the hover status, the infrared radiation intensity distribution alters somewhat in cruise.
Originality/value
Illustrating the influences of exhaust direction on plume flow and helicopter infrared radiation and the differences of helicopter infrared radiation under hover and cruise statuses are identified. Finally, an appropriate exhaust mode is proposed to provide a better IR signature distribution.