Control and monitoring assistant for pilot

Author:

Pieniazek Jacek

Abstract

Purpose Cooperation of a pilot with an automated aircraft control and monitoring systems is a problem which should be solved designing the whole system. The method of design, which creates an assistant of a pilot, is the purpose of this study. Design/methodology/approach An analysis of human factors shows demands for working environment. An integration method for various technological systems and algorithms is searched. Findings It is possible to make the whole system to become a pilot assistant, which has ability to exchange information with pilot by a dialogue. Structural flexibility is obtained in multi-agent system structure. Practical implications Proposed approach is a solution of how to integrate increasing amount of aircraft systems. It is expected that new form of cooperation fits to human features. Proposed methodology solves problem of simultaneous control by two controllers and cooperative making decisions. Social implications Dialogue between human and the system proposed in this solution will change perception of machines. Originality/value New abilities of machines and proposition of their realisation are presented. Presented solution of simultaneous control and decision-making during aircraft control is a novel approach to human–machine cooperation.

Publisher

Emerald

Subject

Aerospace Engineering

Reference32 articles.

1. Breton, R. and Rousseau, R. (2003), “Situation awareness: a review of the concept and its measurement”, Technical Report, DRDC Valcartier TR-2001-220.

2. Tuning trust using cognitive cues for better human-machine collaboration,2010

3. Haptic identification of stiffness and force magnitude,2008

4. Trust evaluation through human-machine dialogue modelling,2011

5. How do automation false alarms and misses affect operator compliance and reliance?,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. User Cognition Antecedents of Smart Assistant Systems in Cars;IEEE Transactions on Intelligent Transportation Systems;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3