Abstract
PurposeThe purpose of the paper is to analyze the active suppression of the aeroelastic vibrations of ailerons with strongly nonlinear characteristics by neural network/reinforcement learning (NN/RL) control method and comparing it with the classic robust methods of suppression.Design/methodology/approachThe flexible wing and aileron with hysteresis nonlinearity is treated as a plant-controller system and NN/RL and robust controller are used to suppress the nonlinear aeroelastic vibrations of aileron. The simulation approach is used for analyzing the efficiency of both types of methods in suppressing of such vibrations.FindingsThe analysis shows that the NN/RL controller is able to suppress the nonlinear vibrations of aileron much better than linear robust method, although its efficiency depends essentially on the NN topology as well as on the RL strategy.Research limitations/implicationsOnly numerical analysis was carried out; thus, the proposed solution is of theoretical value, and its application to the real suppression of aeroelastic vibrations requires further research.Practical implicationsThe work shows the NN/RL method has a great potential in improving suppression of highly nonlinear aeroelastic vibrations, opposed to the classical robust methods that probably reach their limits in this area.Originality/valueThe work raises the questions of controllability of the highly nonlinear aeroelastic systems by means of classical robust and NN/RL methods of control.
Reference27 articles.
1. Transonic aeroelastic simulation for envelope searches and uncertainty analysis;Progress in Aerospace Sciences,2011
2. Tracking control of limit cycle oscillations in an aero-elastic system;Journal of Dynamic Systems, Measurement, and Control,2014
3. Active flutter suppression using recurrent neural networks;Journal of Guidance, Control, and Dynamics,2000
4. Applied active control for a nonlinear aeroelastic structure;AIAA Journal of Guidance, Control and Dynamics,1998
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献