Aeroengine gas trajectory prediction using time-series analysis auto regressive integrated moving average

Author:

Mary Victoria Florence M.,Priyadarshini E.

Abstract

Purpose This study aims to propose the use of time series autoregressive integrated moving average (ARIMA) models to predict gas path performance in aero engines. The gas path is a critical component of an aero engine and its performance is essential for safe and efficient operation of the engine. Design/methodology/approach The study analyzes a data set of gas path performance parameters obtained from a fleet of aero engines. The data is preprocessed and then fitted to ARIMA models to predict the future values of the gas path performance parameters. The performance of the ARIMA models is evaluated using various statistical metrics such as mean absolute error, mean squared error and root mean squared error. The results show that the ARIMA models can accurately predict the gas path performance parameters in aero engines. Findings The proposed methodology can be used for real-time monitoring and controlling the gas path performance parameters in aero engines, which can improve the safety and efficiency of the engines. Both the Box-Ljung test and the residual analysis were used to demonstrate that the models for both time series were adequate. Research limitations/implications To determine whether or not the two series were stationary, the Augmented Dickey–Fuller unit root test was used in this study. The first-order ARIMA models were selected based on the observed autocorrelation function and partial autocorrelation function. Originality/value Further, the authors find that the trend of predicted values and original values are similar and the error between them is small.

Publisher

Emerald

Subject

Aerospace Engineering

Reference32 articles.

1. Advanced diagnostics and prognostics for engine health monitoring,2009

2. A generic Bayesian framework for real-time prognostics and health management (PHM),2009

3. Analysis of time series: an introduction: fourth edition;International Journal of Forecasting,1989

4. A method for satellite time series anomaly detection based on fast-DTW and improved-KNN;Chinese Journal of Aeronautics,2022

5. A review on time series forecasting techniques for building energy consumption;Renewable and Sustainable Energy Reviews,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel method for aero-engine time-series forecasting based on multi-resolution transformer;Expert Systems with Applications;2024-12

2. Exploring Autoregressive Moving Average Models in Wireless Sensor Network Time Series Analysis;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3