Evaluation of discontinuities in friction stir welds of aluminum matrix composites

Author:

Morales Cindy Estefanía,Miranda Argelia Fabiola,Pérez Gladys Yerania,Hurtado Eduardo

Abstract

Purpose The purpose of this paper is to evaluate the welding quality of the friction stir joints of Al-SiC with diverse shape of pin geometry tools. Design/methodology/approach Aluminum matrix composites are gaining unlimited interest and special position in aeronautical industry because of their properties enhanced by the presence of ceramic reinforcement, such as lower density, dimensional stability, exceptional wear and abrasion resistance. Friction stir welding arises as a promising welding process with more advantages than traditional fusion process in the joining of aeronautical components with the utilization of a non-consumable rotational tool shaped by a shoulder and a pin, which can be designed in as many possible geometries. However, the welding quality is not always achieved when varying these pin configurations. Findings The fabrication and implementation of different pin geometry tools to weld the plates of the material allows to study the behavior of the joints assessing some discontinuities produced in the welds. Practical implications To examine the microstructural evolution and its behavior in the different zones of the joint, the practical implication consists in the use of different characterization techniques like the optic microscopy and scanning microscopy, furthermore mechanical test such as the measurement of hardness. Originality/value The study of the joints uses different welding tool geometries that were fabricated at prototype scale contribute in the microstructural analysis as well as in the evaluation of the possible discontinuities that are presented.

Publisher

Emerald

Subject

Aerospace Engineering

Reference20 articles.

1. AWS D17.3/D17.3M specification for friction stir welding of aluminum alloys for aerospace applications;AWSD,2010

2. An overview of friction stir welding;International Journal of Research in Mechanical Engineering Ans Technology,2013

3. On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique;Materials & Design,2014

4. Mechanical and microstructural properties prediction by artificial neural networks in (FSW) processes of dual phase titanium alloys;Journal of Manufacturing Processes,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3