AESA radar and IRST against low observable threats

Author:

Gaitanakis George-Konstantinos,Limnaios George,Zikidis Konstantinos

Abstract

Purpose Modern fighter aircraft using active electronically scanned array (AESA) fire control radars are able to detect and track targets at long ranges, in the order of 50 nautical miles or more. Low observable or stealth technology has contested the radar capabilities, reducing detection/tracking ranges roughly to one-third (or even less, for fighter aircraft radar). Hence, infrared search and track (IRST) systems have been reconsidered as an alternative to the radar. This study aims to explore and compare the capabilities and limitations of these two technologies, AESA radars and IRST systems, as well as their synergy through sensor fusion. Design/methodology/approach The AESA radar range is calculated with the help of the radar equation under certain assumptions, taking into account heat dissipation requirements, using the F-16 fighter as a case study. Concerning the IRST sensor, a new model is proposed for the estimation of the detection range, based on the emitted infrared radiation caused by aerodynamic heating. Findings The maximum detection range provided by an AESA radar could be restricted because of the increased waste heat which is produced and the relevant constraints concerning the cooling capacity of the carrying aircraft. On the other hand, IRST systems exhibit certain advantages over radars against low observable threats. IRST could be combined with a datalink with the help of data fusion, offering weapons-quality track. Originality/value An original approach is provided for the IRST detection range estimation. The AESA/IRST comparison offers valuable insight, while it allows for more efficient planning, at the military acquisition phase, as well as at the tactical level.

Publisher

Emerald

Subject

Aerospace Engineering

Reference22 articles.

1. Afihandarin, D. (2019), “AESA radar calculator”, available at: www.mediafire.com/file/fdmzssya84htnck/AESACalcStable-ReleaseVer.xlsx/file (accessed 8 December 2019).

2. Aircraft 101 (2016), “Radar fundamentals, part II”, available at: https://basicsaboutaerodynamicsandavionics.wordpress.com/2016/08/11/radar-fundamentals-part-ii/ (accessed 8 December 2019).

3. Navy, Boeing tout block III super hornet as partner for F-35;Breaking Defense,2018

4. Gaitanakis, G.-K., Zikidis, K.C. and Kladis, G.P. (2017), “Multi-sensor data fusion for 3D target tracking: a synergy of radar and IRST (InfraRed search & track)”, paper presented at the International Scientific Conference eRA-12, Oct. 25, Attica, Greece.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3