Unfalsified control design using a generalized cost function for a quadrotor

Author:

Hokmabadi Azam,Khodabandeh Mahdi

Abstract

Purpose The purpose of this paper is to design a controller for a quadrotor only by using input–output data without a need for the system model. Design/methodology/approach Tracking control for the quadrotor is considered by using unfalsified control, which is one of the most recent strategies of robust adaptive control. The main assumption in unfalsified control design is that there is no access to the system model. Also, ideal path tracking and controlling the quadrotor are been paid attention to in the presence of external disturbances and uncertainties. First, unfalsified control method is introduced which is a data-driven and model-free approach in the field of adaptive control. Next, model of the quadrotor and unfalsified control design for the quadrotor are presented. Second, design of a control bank consisting of four proportional integral derivative controllers and a sliding mode controller is carried out. Findings A particular innovation on an unfalsified control algorithm in this paper is use of a generalized cost function in the hysteresis switching algorithm to find the best controller. Originality/value Finally, the performance and robustness of the designed controllers are investigated by simulation studies in various operating conditions including reference trajectory changes, facing to wind disturbance, uncertainty of the system and changes in payload, which show acceptable performances.

Publisher

Emerald

Subject

Aerospace Engineering

Reference22 articles.

1. Multi-model unfalsified adaptive switching supervisory control;Automatica,2010

2. Stability of unfalsified adaptive switching control in noisy environments;IEEE Transactions on Automatic Control,2010

3. A combined mbpc/2 dof h infinity controller for a quad rotor UAV,2003

4. A nonlinear adaptive control approach for quadrotor UAVs,2011

5. Performance enhancement of unfalsified adaptive control strategy using fuzzy logic;International Journal of Systems Science,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3