Parametric study of the impact of building envelope systems on embodied and operational carbon of residential buildings

Author:

Hamida AmnehORCID,Alsudairi Abdulsalam,Alshaibani KhalidORCID,Alshamrani OthmanORCID

Abstract

PurposeBuildings are responsible for the consumption of around 40% of energy in the world and account for one-third of greenhouses gas emissions. In Saudi Arabia, residential buildings consume half of total energy among other building sectors. This study aims to explore the impact of sixteen envelope variables on the operational and embodied carbon of a typical Saudi house with over 20 years of operation.Design/methodology/approachA simulation approach has been adopted to examine the effects of envelope variables including external wall type, roof type, glazing type, window to wall ratio (WWR) and shading device. To model the building and define the envelope materials and quantify the annual energy consumption, DesignBuilder software was used. Following modelling, operational carbon was calculated. A “cradle-to-gate” approach was adopted to assess embodied carbon during the production of materials for the envelope variables based on the Inventory of Carbon Energy database.FindingsThe results showed that operational carbon represented 90% of total life cycle carbon, whilst embodied carbon accounted for 10%. The sensitivity analysis revealed that 25% WWR contributes to a significant increase in operational carbon by 47.4%. Additionally, the efficient block wall with marble has a major embodiment of carbon greater than the base case by 10.7%.Research limitations/implicationsThis study is a contribution to the field of calculating the embodied and operational carbon emissions of a residential unit. Besides, it provides an examination of the impact of each envelope variable on both embodied and operational carbon. This study is limited by the impact of sixteen envelope variables on the embodied as well as operational carbon.Originality/valueThis study is the first attempt on investigating the effects of envelop variables on carbon footprint for residential buildings in Saudi Arabia.

Publisher

Emerald

Subject

Building and Construction,Civil and Structural Engineering

Reference49 articles.

1. Energy performance of windows in office buildings considering daylight integration and visual comfort in hot climates;Energy and Buildings,2015

2. The potential of solar energy in Saudi Arabia: the residential sector;Journal of Engineering and Architecture,2018

3. Design guidelines for buildings in Saudi Arabia considering energy conservation requirements;Applied Mechanics and Materials,2014

4. Optimal design of residential building envelope systems in the Kingdom of Saudi Arabia;Energy and Buildings,2015

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3