Control system designing for correcting wing–fuselage assembly deformation of a large aircraft

Author:

Fang Qiang,Chen Weidong,Zhao Anan,Deng Changxi,Fei Shaohua

Abstract

Purpose In aircraft wing–fuselage assembly, the distributed multi-point support layout of positioners causes fuselage to deform under gravity load, leading to assembly difficulty and assembly stress. This paper aims to propose a hybrid force position control method to balance aerodynamic shape accuracy and deformation of assembly area, thereby correcting assembly deformation and reducing assembly stress. Design/methodology/approach Force and position control axes of positioners are selected based on screw theory and ellipsoid method. The position-control axes follow the posture trajectory to align the fuselage posture. To exert force on the fuselage and correct the deformations, the force-control axes follow the contact force derived by using orthogonal experiments and partial least squares regression (PLSR). Finite element simulation and one-dimension deformation correction experiment are conducted to verify the validity of this method. Findings Simulation results indicate that hybrid force position control method can correct assembly deformation and improve the wing–fuselage assembly quality significantly. Experiment on specimen verifies the effect of this method indirectly. Originality/value The proposed method gives a solution to solve the deformation problem during aircraft wing-fuselage assembly, thereby reducing assembly stress and improving assembly quality.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference21 articles.

1. Numerical study on predicting and correcting assembly deformation of a large fuselage panel during digital assembly;Assembly Automation,2014

2. Efficient method of positioning error analysis for aeronautical thin-walled structures multi-state riveting;International Journal of Advanced Manufacturing Technology,2011

3. Variation modeling of aeronautical thin-walled structures with multi-state riveting;Journal of Manufacturing Systems,2011

4. Modeling and analyzing of variation propagation in aeronautical thin-walled structures automated riveting;Assembly Automation,2012

5. Variation modeling for fuselage structures in large aircraft digital assembly;Assembly Automation,2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3