A software framework for agricultural and forestry robots

Author:

Hellström Thomas,Ringdahl Ola

Abstract

PurposeThe purpose of this paper is to describe a generic software framework for development of agricultural and forestry robots. The primary goal is to provide generic high‐level functionality and to encourage distributed and structured programming, thus leading to faster and simplified development of robots. A secondary goal is to investigate the value of several architecture views when describing different software aspects of a robotics system.Design/methodology/approachThe framework is constructed with a hybrid robot architecture, with a static state machine that implements a flow diagram describing each specific robot. Furthermore, generic modules for GUI, resource management, performance monitoring, and error handling are included. The framework is described with logical, development, process, and physical architecture views.FindingsThe multiple architecture views provide complementary information that is valuable both during and after the design phase. The framework has been shown to be efficient and time saving when integrating work by several partners in several robotics projects. Although the framework is guided by the specific needs of harvesting agricultural robots, the result is believed to be of general value for development also of other types of robots.Originality/valueIn this paper, the authors present a novel generic framework for development of agricultural and forestry robots. The robot architecture uses a state machine as replacement for the planner commonly found in other hybrid architectures. The framework is described with multiple architecture views.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3