Author:
Şenay Gülbanu,Kaya Metin,Gedik Engin,Kayfeci Muhammet
Abstract
Purpose
The purpose of this study is to numerically investigate the heat transfer enhancement by using two different nanofluids flow throughout the square duct under a constant heat flux (500 × 103 W/m2).
Design/methodology/approach
In numerical computations, ANSYS Fluent code based on the finite volume method was used to solve governing equations by iteratively. Water, Al2O3-water and TiO2-water nanofluids were used for different flow velocities changing 1 m/s to 8 m/s (i.e. Reynolds number varying from 3,000 to 100,000).
Findings
The results were compared with results published previously in the literature and close agreement was observed especially considering Dittus and Boelter correlation for water. It was found that from the obtained results, increasing flow velocity and volume fractions of nanoparticles has caused to increase Nu number for all cases. Besides, variations of pressure drop, Darcy friction factor are presented graphically and discussed in detail. The results are consistent with a deviation of 1.3 to 15 per cent with the results of other researchers.
Originality/value
The effects of the Re numbers and volume fractions of nanoparticles (0.01 ≤ Φ ≤ 0.04) on the heat transfer and fluid flow characteristics such as average Nu number, pressure drop (ΔP) and Darcy friction factor (f) were investigated.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献